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Abstract. A method was developed for the detection of corrosion by mass loss in 
aluminum strips using Lamb waves in pitch-catch mode and a signal correlation 
based technique. This technique compares the measured signals of the damaged 
structures with that of the undamaged structure. However, this technique does not 
allow for the detection or differentiation of minor damages by mass loss.  
 This work presents an refinement of the technique that improves the ability to 
distinguish between damages of small mass loss. It includes the following features: 
Choice of the best excitation frequency and of the best wavelet decomposition, 
calculus of the best window in time to distinguish between damaged and undamaged 
states and of the best metric to assess damage condition (Correlation, Mahalanobis 
distance and Minkowski distance). 
 Six aluminum strips 914 mm by 14 mm by 1.6 mm were tested. The 
characteristics of the excitation signal were as follows: 7 count sine burst with 
Hanning window, amplitude of 5V and frequency of 100 kHz. Signal generation and 
recording was carried out with a PXI platform of National Instruments. Simulated 
holes of increasing depths were obtained by electrochemical polishing. 
 The results obtained so far showed that the POD â vs. a curve is strongly 
affected by the metric chosen. The a90/95 value using correlation is around 0.3 mm, 
whereas using Mahalanobis distance is half that value (0.1594 mm). 
 Further developments of the technique includes the extension of the technique 
to aluminum sheet, including damage localization and POD analysis. 

Introduction  

Corrosion is a major cause to ground an airplane, reducing its availability and increasing its 
maintenance cost. Therefore, several structural health monitoring (SHM) techniques have 
arisen in the last decades that allow for the early detection of corrosion damage. Among 
them are those based on guided waves which use of piezoelectric wafer active sensors 
(PWAS) bonded to the structure to be monitored for corrosion. 

Corrosion damage results in a local thickness reduction of the aluminum of the 
airplane's fuselage which can pose a threat to the plane's structural integrity. The capability 
of the SHM system to detect corrosion has to be assessed for its probability of detection 
(POD) as a function of damage size [1]. 
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A method was developed for the detection of corrosion by mass loss in aluminum 
strips using Lamb waves in pitch-catch mode and a signal correlation based technique, by 
which the measured signals of the damaged structures were compared with that of the 
undamaged structure. Damaged structures were obtained through the introduction of 
artificial defects of increasing depths by electrolytic polishing [2]. According to Lamb 
wave theory, symmetric (S0) and antisymmetric (A0) waves can be generated in a broad 
range of signal excitation frequencies, whose propagation velocity depends on the 
frequency and the thickness of the structural element (strips, sheets) [3]. 

However, this technique originally did not allow for the detection or differentiation 
of minor damages by mass loss (low depths defects). The POD â (response) vs. a (depth) 
curve obtained resulted in a90/95 value of 0.30 mm. 

A refinement of the technique is presented in this paper which improves the ability 
to distinguish between damages of low depths. This was accomplished through different 
ways, as described below. 

1.1 Window in time. 

The first signal packets recorded are those due to the S0 and A0 waves. It is important to 
isolate these waves from the rest of the signal to investigate how their propagation velocity 
is affected by the damage (see Fig. 1). 
 

 
Fig. 1. S0 and A0 waves in recorded signal (y-axis is signal amplitude in A) with frequency 100 kHz. 

1.2 Choice of the best excitation frequency.  

For a frequency range of 0 to 0.4 MHz, very common in SHM systems [3], the group 
velocity diagram of Fig. 2 for aluminium shows that, for a thickness value of 2 mm, the 
best frequency range lies in the 0.10 MHz to 0.15 MHz (0.2 to 0.3 MHz×mm), since in this 

 

 
Fig. 2. Group velocity diagram for aluminum. 
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range the A0 waves will experience a velocity decrease with decrease in thickness (increase 
in damage depth). The larger the damage depth, the more significant will be the velocity 
decrease. S0 waves propagation velocity will be less affected by thickness reduction in this 
frequency range. 
 

1.3 Choice of the best wavelet decomposition.  

Wavelet transform has been used in variety of engineering applications. As was described 
in [4], some of key features of wavelet transform which make it such an useful tool are as 
follows: spatial-frequency localization, energy compaction, decaying magnitude of wavelet 
coefficients across sub-bands [5]–[7]. The DWT of a signal x is calculated by passing it 
through a series of filters in one, two or more dimension. In order to perform this 
transformation the original signal is passed through a band-pass filter (called by G and is 
named mother wavelet) to give a detail component for the first level. At the same level, 
convolving the signal with a low-pass filter (called by H) brings another component named 
approximate due to its low resolution. G and H are orthogonal vectors with N×1 elements 
[4], [8]. This procedure is shown in Fig. 3. 

An advantage (app detect flaws) is that the main components of the source wave 
signal are focused in detailed parts of level 6 (d6) [9] or level 7 (d6) [5], [10]. Mother-
wavelet used in the wavelet decomposition belong to the families symlet, coiflet, 
daubechies, etc. 
 

 
Fig. 3. Decomposition of original signal X by DWT [11]. 

1.4 Choice of similarity metric for baseline and outlier signals.  

Three metrics were investigated: 
 

1.4.1 Correlation coefficient.  

The general principle is that a measure of similarity should be invariant under admissible 
data transformations, which is to say changes in scale. Thus, it is a measure designed for 
interval data. The correlation coefficient, automatically disregards differences in variables 
that can be attributed to differences in scale. The sample correlation coefficient is given by 
Equation (1): 
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where x  and y  are the sample means of x  and y , which refers to the undamaged 
and damaged state, respectively. In this work, the similarity metric used in fact is 1-rxy, in 
order to have an increasing curve, similar to the other metrics. 
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1.4.2 Mahalanobis distance.  

This metric is defined from the definition of multivariate normal distribution [12]. The 
estimator of the Mahalanobis distance between a potential outlier vector y  (damaged state) 
and baseline sample (undamaged state) set can be obtained by Equation (2): 

(2)          )'()( 12 xyxyDxy −Σ−= −

 

 
where x  is the average of the baseline sample feature vectors, and Σ  the estimated 

covariance matrix. When the structural system is damaged, it is expected that the 
Mahalanobis distance of vectors will increase significantly [13]. 
 
1.4.3 Minkowski distance of degree three.  

This metric can be considered a generalization of Euclidian distance (p=3) and is given by 
Equation (3). 
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The proposed refinement of the method is obtained by searching for the parameters 

which present linear regression with higher coefficient of determination for the behaviour 
of the system and also in analysis of the confidence interval. This amounts to a linear 
correspondence from damage to detection (POD guided research). 

Experimental setup 

Aluminum strips 914 mm long by 14 mm wide by 2 mm thick were tested with the 
configuration of Fig. 4. The PAWS (7mm × 7mm × 0.2 mm) were attached with epoxy 
resin [3]. Later, the strips were etched halfway between the sensors to achieve perforation 
with 10 mm diameter and depths from 0.02mm up to 0.5mm. To operate the system were 
 

 

Fig. 4. Configuration of the tested aluminum strips.  
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developed in LabView applications that generate Hanning signals. Response signals are 
post processed using Matlab® to find the best parameters and software package ML1823 
[1], [14] to perform the calculation of the POD. 

Etching was done by electrolytic polishing using a solution composed of 800 ml 
etanol, 140 ml distilled water and 60 ml of perchloric acid. The electrolytic polishing 
parameters were: voltage 5V, current 0.2-0.3A and polishing times up to one hour, 
according to depth. 

Lamb waves were generated and recorded in pitch catch mode. The characteristics 
of the excitation signal were as follows: 7 count sine burst with Hanning window, 
amplitude of 5V and frequency of 100 kHz (0.1 MHz) and 150 kHz (0.15 MHz). Signal 
generation and recording was carried out with a NI PXI 5422 platform of National 
Instruments.  

Results 

The responses of all samples are simultaneously used in the determination of a linear 
regression line of the type  xy βα +=  , relating damage size with each similarity metric. 
Thus a particular set of parameters is chosen as best fit for each metric. 
• In the case of the correlation coefficient metric, the best set of parameters was using 

100 kHz with 7 cycles, mother-wavelet Symlet2 in the interval from 0.33 ms to 
0.56 ms. 

• In the case of the Mahalanobis distance, the best set of parameters was using 100 kHz 
with 7 cycles, mother-wavelet Coiflet2 in the interval from 0.323 ms to 0.575 ms.  

• Finally, in the case of the Minkowski distance, the best set of parameters was using 
100 kHz with 7 cycles, mother-wavelet Symlet2 in the interval from 0.2 ms to 
0.575 ms. 

For each of these three set configurations are compared the critical points in order to 
evaluate the best strategy in what concerns false positive results, better sensitivity to 
smaller damage, confidence bounds. The figures below present the linear regressions of the 
system data to the left and the POD curve to the right. The surrounding dotted lines get 
closer to each other at the beginning (smaller damage) until they converge to the point of 
zero damage. This convergence at the start indicates no false positive results. 

The Fig. 5 presents the POD curve that was obtained without any improvement, 

 
Fig. 5. Curve POD â vs a using correlation metric (without improvement). 
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using correlation coefficient as the similarity metric without Wavelet transform. It can be 
noticed that the a90/95 value, associated to smaller damage for which there is 90% of 
probability and 95% of confidence bound, is 0.3351 mm. 
 

The Fig. 6 presents the POD curve obtained using the correlation coefficient as the 
similarity metric and the Wavelet transform with mother-wavelet Coiflet2, in which case 
a90/95 was 0.2382 mm. 
 

 

Fig. 6. Curve POD â vs a using correlation metric with filter coiflet2 wavelet. 

 
Finally, Fig. 7 presents the improved system. It shows the POD curve obtained 

using Mahalanobis distance as the similarity metric and mother-wavelet Coiflet2. In this 
case, a90/95 was 0.161 mm. 

 

  

Fig. 7. Curve POD â vs a using Mahalanobis metric with filter coiflet2 wavelet (with improvement). 
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Fig. 8 compares the POD curves without and with improvement, highlighting the 
decrease in the a90/95 value achieved.  
 

 

Fig. 8. Comparison between POD â vs a without and with improvement. 

To obtain these results were tested different combinations of parameters: window in 
time (between 0.18 ms and 0.73 ms); wavelet families (symlet, coiflet and daubechies,) and 
Similarity metric (correlation, Mahalanobis, Minkowski distance). In the case of using the 
distance Minkowski/symlet2 the result is a90/95 = 0.25 and in other cases also showed no 
improvement in relation to Mahalanobis/coiflet2. 

 

Conclusion 

The search parameters proved useful to improve the performance of the fault detection 
capability by the process described. The set of parameters with Mahalanobis distance found 
for significantly improves the smallest damage that can be detected with a probability of 
detection 90% and 95% of confidence bound. Applying post processing improvements, the 
statistical value a90/95 = 0.33 mm decreased to a90/95 = 0.16 mm, increasing the sensitivity of 
the system. 
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