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Abstract. A method was developed for the detection of caoro®y mass loss in
aluminum strips using Lamb waves in pitch-catch en@ahd a signal correlation
based technique. This technique compares the nezhsignals of the damaged
structures with that of the undamaged structurenéier, this technique does not
allow for the detection or differentiation of mindamages by mass loss.

This work presents an refinement of the technitpa¢ improves the ability to
distinguish between damages of small mass losscllides the following features:
Choice of the best excitation frequency and of blest wavelet decomposition,
calculus of the best window in time to distingustween damaged and undamaged
states and of the best metric to assess damagéicor(orrelation, Mahalanobis
distance and Minkowski distance).

Six aluminum strips 914 mm by 14 mm by 1.6 mm weested. The
characteristics of the excitation signal were dtofes: 7 count sine burst with
Hanning window, amplitude of 5V and frequency 001Mz. Signal generation and
recording was carried out with a PXI platform oftidaal Instruments. Simulated
holes of increasing depths were obtained by elektmical polishing.

The results obtained so far showed that the POB.& curve is strongly
affected by the metric chosen. Thg,g value using correlation is around 0.3 mm,
whereas using Mahalanobis distance is half thatevéd.1594 mm).

Further developments of the technique includesttiension of the technique
to aluminum sheet, including damage localizatiod BOD analysis.

Introduction

Corrosion is a major cause to ground an airplagshjaing its availability and increasing its
maintenance cost. Therefore, several structurdthhezonitoring (SHM) techniques have
arisen in the last decades that allow for the edefection of corrosion damage. Among
them are those based on guided waves which uséepbglectric wafer active sensors
(PWAS) bonded to the structure to be monitorectérrosion.

Corrosion damage results in a local thickness maoluof the aluminum of the
airplane's fuselage which can pose a threat tpldmee's structural integrity. The capability
of the SHM system to detect corrosion has to besassl for its probability of detection
(POD) as a function of damage size [1].
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A method was developed for the detection of coodly mass loss in aluminum
strips using Lamb waves in pitch-catch mode antyj@as correlation based technique, by
which the measured signals of the damaged strisctwere compared with that of the
undamaged structure. Damaged structures were edtdimrough the introduction of
artificial defects of increasing depths by elegttiol polishing [2]. According to Lamb
wave theory, symmetric (S0) and antisymmetric (d@Vves can be generated in a broad
range of signal excitation frequencies, whose pgapan velocity depends on the
frequency and the thickness of the structural etegr(erips, sheets) [3].

However, this technique originally did not allow fine detection or differentiation
of minor damages by mass loss (low depths defeths®.POD & (response) vs. a (depth)
curve obtained resulted igy@s value of 0.30 mm.

A refinement of the technique is presented in gaiper which improves the ability
to distinguish between damages of low depths. Was accomplished through different
ways, as described below.

1.1Window in time.

The first signal packets recorded are those dubed@0 and A0 waves. It is important to
isolate these waves from the rest of the signaitestigate how their propagation velocity
is affected by the damage (see Fig. 1).
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Fig. 1. SO and A0 waves in recorded signal (y-axis ia@igmplitude in A) with frequency 100 kHz.

1.2 Choice of the best excitation frequency.

For a frequency range of 0 to 0.4 MHz, very comnmorSHM systems [3], the group
velocity diagram of Fig. 2 for aluminium shows thedr a thickness value of 2 mm, the
best frequency range lies in the 0.10 MHz to 0.3$zM0.2 to 0.3 MHzxmm), since in this
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Fig. 2. Group velocity diagram for aluminum.



range the A0 waves will experience a velocity daseewith decrease in thickness (increase
in damage depth). The larger the damage depthmtre significant will be the velocity
decrease. SO waves propagation velocity will be &fected by thickness reduction in this

frequency range.

1.3 Choice of the best wavelet decomposition.

Wavelet transform has been used in variety of exgging applications. As was described
in [4], some of key features of wavelet transformmickh make it such an useful tool are as
follows: spatial-frequency localization, energy qmaution, decaying magnitude of wavelet
coefficients across sub-bands [5]-[7]. The DWT ddignal x is calculated by passing it
through a series of filters in one, two or more ension. In order to perform this
transformation the original signal is passed thioagoand-pass filter (called & and is
named mother wavelet) to give a detail componentHe first level. At the same level,
convolving the signal with a low-pass filter (callby H) brings another component named
approximate due to its low resolutiog@.andH are orthogonal vectors with Nx1 elements
[4], [8]. This procedure is shown in Fig. 3.

An advantage (app detect flaws) is that the mampmments of the source wave
signal are focused in detailed parts of level 6) (@ or level 7 (d6) [5], [10]. Mother-
wavelet used in the wavelet decomposition belongthte families symlet, coiflet,
daubechies, etc.
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Fig. 3. Decomposition of original signal X by DWT [11].

1.4 Choice of similarity metric for baseline andl@r signals.
Three metrics were investigated:

1.4.1 Correlation coefficient.

The general principle is that a measure of sintyahould be invariant under admissible
data transformations, which is to say changes atesdhus, it is a measure designed for
interval data. The correlation coefficient, autoiwelty disregards differences in variables
that can be attributed to differences in scale. Jdraple correlation coefficient is given by

Equation (1):
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where X andy are the sample means ®wfand y, which refers to the undamaged

and damaged state, respectively. In this work sthelarity metric used in fact is fiy, in
order to have an increasing curve, similar to ttheiometrics.

(1)




1.4.2 Mahalanobis distance.

This metric is defined from the definition of mwhiriate normal distribution [12]. The
estimator of the Mahalanobis distance between enpiat outlier vectory (damaged state)

and baseline sample (undamaged state) set cartdieezbby Equation (2):

Dy =(y =X X7 (y-X) (@)

where X is the average of the baseline sample featur@readndX the estimated
covariance matrix. When the structural system isnatged, it is expected that the
Mahalanobis distance of vectors will increase digantly [13].

1.4.3 Minkowski distance of degree three.

This metric can be considered a generalizationuddiftian distancep=3) and is given by
Equation (3).

m, =[Z(>q - yi)"j; (3)

The proposed refinement of the method is obtainesdarching for the parameters
which present linear regression with higher coédfit of determination for the behaviour
of the system and also in analysis of the confideimterval. This amounts to a linear
correspondence from damage to detection (POD guisksshrch).

Experimental setup

Aluminum strips 914 mm long by 14 mm wide by 2 mhick were tested with the
configuration of Fig. 4. The PAWS (7mm x 7mm x On2n) were attached with epoxy
resin [3]. Later, the strips were etched halfwayneen the sensors to achieve perforation
with 10 mm diameter and depths from 0.02mm up smndn. To operate the system were

I:I PZT Electrolytic polishing

Idepth:
0.04mm
0.10mm
0.20mm
0.30mm
0.40mm
0.50mm

Fig. 4. Configuration of the tested aluminum strips.



developed in LabView applications that generate ritagn signals. Response signals are
post processed using Matlab® to find the best patars and software package ML1823
[1], [14] to perform the calculation of the POD.

Etching was done by electrolytic polishing usingaution composed of 800 ml
etanol, 140 ml distilled water and 60 ml of percldoacid. The electrolytic polishing
parameters were: voltage 5V, current 0.2-0.3A aodisiping times up to one hour,
according to depth.

Lamb waves were generated and recorded in pitahcabde. The characteristics
of the excitation signal were as follows: 7 couimesburst with Hanning window,
amplitude of 5V and frequency of 100 kHz (0.1 MH=)d 150 kHz (0.15 MHz). Signal
generation and recording was carried out with aPRXll 5422 platform of National
Instruments.

Results

The responses of all samples are simultaneouslg irsghe determination of a linear
regression line of the typey =a + X , relating damage size with each similarity metric
Thus a particular set of parameters is chosen stfibéor each metric.

* In the case of the correlation coefficient mettlie best set of parameters was using
100 kHz with 7 cycles, mother-wavelet Symlet2 ire tmterval from 0.33 ms to
0.56 ms.

* In the case of the Mahalanobis distance, the lstfsparameters was using 100 kHz
with 7 cycles, mother-wavelet Coiflet2 in the in&rfrom 0.323 ms to 0.575 ms.

* Finally, in the case of the Minkowski distance, thest set of parameters was using
100 kHz with 7 cycles, mother-wavelet Symlet2 ire tinterval from 0.2 ms to
0.575 ms.

For each of these three set configurations are aodpthe critical points in order to
evaluate the best strategy in what concerns fatsstipe results, better sensitivity to
smaller damage, confidence bounds. The figuresabptesent the linear regressions of the
system data to the left and the POD curve to tet.riThe surrounding dotted lines get
closer to each other at the beginning (smaller dgnantil they converge to the point of
zero damage. This convergence at the start indicetdalse positive results.

The Fig. 5 presents the POD curve that was obtam#tbut any improvement,
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Fig. 5. Curve POLA vs ausing correlation metric (without improvement).
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using correlation coefficient as the similarity metwithout Wavelet transform. It can be
noticed that the gg,95 value, associated to smaller damage for whichether90% of
probability and 95% of confidence bound, is 0.38%th.

The Fig. 6 presents the POD curve obtained usiegtinrelation coefficient as the
similarity metric and the Wavelet transform with tmer-wavelet Coiflet2, in which case
agoos was 0.2382 mm.
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Fig. 6. Curve POLA vs ausing correlation metric with filter coiflet2 waleg.

Finally, Fig. 7 presents the improved system. lbveh the POD curve obtained
using Mahalanobis distance as the similarity mednd mother-wavelet Coiflet2. In this
case, gygswas 0.161 mm.
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Fig. 8 compares the POD curves without and withrowement, highlighting the
decrease in theggs value achieved.
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Fig. 8. Comparison between PCvs awithout and with improvement.

To obtain these results were tested different caoatlons of parameters: window in
time (between 0.18 ms and 0.73 ms); wavelet fam{sgmlet, coiflet and daubechies,) and
Similarity metric (correlation, Mahalanobis, Minkel distance). In the case of using the
distance Minkowski/symlet2 the result ispg = 0.25 and in other cases also showed no
improvement in relation to Mahalanobis/coiflet2.

Conclusion

The search parameters proved useful to improvepérormance of the fault detection

capability by the process described. The set cddrpaters with Mahalanobis distance found
for significantly improves the smallest damage tta be detected with a probability of

detection 90% and 95% of confidence bound. Applyogt processing improvements, the
statistical value g,95 = 0.33 mm decreased tgn@s = 0.16 mm, increasing the sensitivity of
the system.
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