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Abstract. The actual condition of a system may not be identical to its apparent 

condition as reported from inspections.  The apparent condition can be biased by 

non-detection of actual flaws, false calls of non-existent defects, incorrectly 

characterized indications, and lack of results from uninspected regions.  Reliability 

analysis tools, such as probability of detection, false call estimation, and assessment 

of sizing uncertainty, are commonly used to compensate for the difference between 

the actual and apparent condition.  However, these static corrections neglect the time 

evolution of the system condition, which may, over the system life cycle, diverge 

from the condition assumed by its operators.  

 In this work, we model the unobserved, underlying condition of a large system 

over decades of service life.  Maintenance and repair activities, all contingent upon 

earlier inspection results, are included in the model.  The apparent condition at each 

inspection date is then calculated by filtering the underlying condition through 

inspection reliability analysis.  In this particular case study, a large historical data set 

permits us to compare predicted inspection results to those obtained over many 

years.  The assumed distribution of degradation rates, effectiveness of repair, and 

inspection reliability parameters can then be adjusted to provide a more accurate 

picture of the actual system condition. 

 The history and predicted future life of a system are best obtained from this 

type of model, which permits evaluation of alternative scenarios for inspection 

priorities, assessment of repair effectiveness, and meaningful planning for end-of-

life or life extension. 

1. Introduction  

Life management requires knowledge of the actual condition of a system, which may not be 

identical to its apparent condition as reported from inspections.  The apparent condition can 

be biased by non-detection of actual flaws, false calls of non-existent defects, incorrectly 

sized indications, and lack of results from uninspected regions.  Reliability analysis tools, 

such as probability of detection, false call estimation, and assessment of sizing uncertainty, 

are commonly used to compensate for the difference between the actual and apparent 

condition.  However, these static corrections neglect the time evolution of the system 

condition, which may, over the system life cycle, diverge from the condition assumed by its 

operators. 

 In this work, we model the unobserved, underlying condition of a system over 

decades of service life.  Maintenance and repair activities, all contingent upon inspection 

results, are included in the model.  The apparent condition at each inspection date is then 

calculated by filtering the underlying condition through reliability analysis.  In this 
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particular case study, a large historical data set permits us to compare predicted inspection 

results to those obtained over many years.  The assumed distribution of degradation rates, 

effectiveness of repair, and reliability parameters can then be adjusted to provide a more 

accurate picture of the actual system condition. 

 Once limits on these parameters are established, the model can be exercised to 

evaluate alternative inspection scenarios, assess the value of repairs, and estimate system 

life expectancy for various maintenance strategies. 

 The concept is in some ways similar to the xLPR (extremely low probability of 

rupture) framework [1] pursued in the United States; a major difference is our focus on the 

consequences of inspection and repair, rather than on probabilistic fracture mechanics, and 

our benchmarking to extensive historical data sets. 

2. Model  

The test case chosen for this model is taken from the inspection of steam generators [2]; the 

reference data set includes inspection results from thousands of tubes per steam generator, 

measured over nearly two decades.  The model assumes a subset of the system has an 

active degradation mode and that this proceeds in a stochastic (i.e., random) but monotonic 

fashion.  The simulated system condition is updated periodically, and on some of these 

occasions it is subjected to inspection or repaired, with inspection reliability and repair 

effectiveness parameterized to generate the condition that would be apparent to observers.  

The simulated underlying condition and simulated apparent condition can then be tracked 

over time and compared to the observed condition of real inspected systems, as apparent 

from decades of inspection results.     

 Although much is known about the mechanics of the degradation mode in the test 

case, such refinements are not introduced to drive the simulation at this stage.  Other 

simplifications are introduced for computational tractability: 

 Flaw depth, measured in percent through-wall, is binned at 5% intervals. 

 Only the deepest flaw in a tube is considered. 

 A probabilistic approach is taken to permit evaluation of a distribution of possible 

behaviours. 

 The tube coordinates and flaw location of a degradation site are not preserved; only 

a flaw distribution (number of tubes per flaw depth bin) is retained from each cycle. 

 The probability of flaw growth per propagation cycle into the next deeper bin is a 

parameter in the model. 

 The probability of growth by n depth bins is taken as the single-bin growth 

probability divided by two to the (n-1)
th

 power. 

 Future behaviour of any potential degradation site is assumed independent of past 

behaviour. 

These simplifications permit use of a Markov chain, which offers many advantages, 

including closed-form regression to large historical data sets to obtain parameter values for 

degradation rates, inspection reliability, and repair effectiveness.  Results presented here are 

from the Markov simulation.  However, further work, replacing the Markov chain by a 

Monte Carlo approach, has already begun, and will remove the need for many of the above 

simplifications; it will also permit tracking of multiple individual flaw sites per tube with 

history- and position-dependent degradation rates. 
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3. Markov chain for an evolving population  

The principles of Markov chain calculations for inspected systems have been illustrated 

elsewhere [3].  The present calculation is for progressive degradation of monotonically 

increasing through-wall depth.  We use a 21-state Markov model, with a state vector 

composed of 20 evenly-spaced depth bins, each 5% through-wall in width, and one plugged 

state.  Unlike the calculation in [3], this chain has no true “repaired” state, since plugged 

tubes are removed from service, not replaced.  Three types of iteration cycle are available: 

growth, growth/inspection, and growth/inspection/plugging.  For a growth cycle, the bxb 

transition matrix, M(λij), is comprised of elements λij, which denote the probability of going 

from state i to state j: 
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In the calculation, b is the number of bins, in this case 21, and the probability of going to a 

deeper state (matrix elements above the diagonal) is taken as 
12/ n

ij , where ε is the 

single-bin transition probability and ijn .  Reverting to a shallower state would only 

be possible for a complete repair.  Since plugged tubes are removed from service, and are 

not replaced, below-diagonal elements are always zero.  The diagonal elements of the 

matrix are the probability for remaining in the same state, and are one minus the other 

elements in the row, so the sum of elements in a row always adds to unity.  In a cycle with 

no plugging, there is zero probability of going to state j = 21, making all off-diagonal 

elements of the final column in the matrix equal to zero. 

 For a growth/inspection/plugging cycle, the final column is the probability of 

detection for state i, with a decision level set at the plugging threshold.  The remainder of 

the matrix is the same as for the simple growth case, but with inclusion of the plugging 

probability in the row normalization to unity. 

 The calculation is performed on the (unobserved) total system, which starts at time 

t0 with an unflawed state vector p0, with all tubes having no flaws deeper than 5%, 

i.e. p0 = [1,0,0,...,0].  The 21x21 transition matrix M(λij) multiplies the successive 

21-element state vectors at each time, tk, to obtain the state vector at the next operating 

cycle, tk+1.  To obtain the observed flaw distribution, each element of pi is multiplied by the 

detection probability for that depth bin, calculated with the decision level for indication 

reporting. 

4. Data  

The historical inspection data with which this test case is compared comes from inspections 

of steam generator tubing from a nuclear power station.  With statistics on the order of 10
4
 

tubes inspected many times each, over a period of nearly two decades, the data set is rich 

and comprehensive.  At this stage of the model development, minor changes in detection 

and sizing techniques, post-remediation data (taken after the degradation mechanism was 

addressed), and plugging campaigns involving very few tubes are neglected.  For 

comparison with the simulations, only flaw distributions as a function of depth and time are 

retained.   
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5. Simulating the static condition of the system  

An example of a flaw depth distribution measured for one steam generator in one 

inspection is plotted as the discrete points in Figure 1.  The inspection technology does not 

detect very small flaws, and the life-management strategy employed by the utility calls for 

plugging tubes with flaws exceeding a certain depth.  Hence, a fairly narrow range of flaw 

depths is seen in any inspection, typically ranging from 10 to 40% through-wall depth.  

Plugged tubes are tallied at the arbitrary depth of 101% in the plot.  The static case is 

presented here simply to illustrate the relationship between observed and underlying 

distributions.  We consider the low-end data cutoff to result from application of a 

probability of detection curve as shown schematically by the green dashed line in the 

figure, and the high-end cutoff to result from a similarly shaped curve (red dashed line) 

with a decision threshold related to the plugging criterion.  To obtain a curve corresponding 

to the data, a flaw distribution obtained from parameterized growth rate and population size 

is filtered by distributions for the probability of detection and the probability of plugging.  

In Figure 1, the broad grey line, filtered by the two distribution functions, gives the thin 

blue line, which approximates the data.  This suggests the true (but unobserved) underlying 

distribution for very shallow flaws cannot be determined.  With no possibility of detection 

and no consequences for tube integrity, the question is moot for condition monitoring, 

which deals only with the current properties of the system.  However, for operational 

assessments, which address future condition, the time evolution of the system must be 

understood, and the distribution of nearly detectable flaws can be of relevance. 

 

 

 
 

Figure 1. Number of observed flaws per 5-percent depth bin (diamonds) for a steam generator with nearly 

two decades of operating history.  The unobserved parent distribution (thick grey line) is filtered by the 

detection and plugging probabilities to approximate the data, giving the thin blue line.  Plugged tubes are 

assigned a depth of 101% through-wall). 
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6. Simulating the time evolution of the system  

Since the flaw population actually evolves over the life of the system, a static snapshot of 

the detectable range of flaws is not adequate.  Typically, new flaws initiate, become 

detectable, become deeper, and may eventually be removed by plugging.  An understanding 

of how the system condition changes over time is needed to optimize inspection and repair 

strategies. 

 Successive inspection results of the type illustrated in Figure 1 are input for each 

steam generator and serve as reference values for the state vectors obtained from the 

Markov chain.  The discrete points in Figure 2 represent such a historical distribution.  The 

calculation is performed starting with an unflawed state vector, which is multiplied by the 

21x21 transition matrix M(λij) to obtain a new state vector.  The calculation continues, with 

the resulting state vector multiplied again to produce the next vector, and so on.  To obtain 

the observed flaw distribution for comparison with inspection results, each element of the 

relevant state vector is multiplied by the detection probability for that depth bin, calculated 

with the decision level for indication reporting.  For operating cycles ending with repair or 

plugging, a matrix with non-zero transition probabilities to the repaired state is used. 

 A regression to minimize the residuals between the calculated state vectors and the 

observed distributions determines the parameters of the model.  The probability of flaw 

growth, susceptible sample size, detection decision threshold, and plugging decision 

threshold are the fitted variables in the calculation.  In addition, shape parameters for the 

detection and plugging curves may be optimized if they are not independently determined.   

 

 

 
 
Figure 2. Time progression of the number of observed flaws per 5-percent depth bin in historical inspection 

data (discrete points).  The smoothed lines are the calculated observable populations resulting from 

adjustment of flaw growth and inspection reliability parameters as chosen to approximate the data. 
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 Figure 2 shows a superposition of the expected inspection observations on the 

actual data.  Note the in-fill and eventual saturation of the observed flaw depth population, 

and the loss of the large-depth tail once the plugging option is exercised.  More 

importantly, one can examine the modeled underlying (but incompletely observed) flaw 

depth distributions, on which the observable agreement is based.  Figure 3 shows the 

progression of the underlying system condition.  The link to a comprehensive set of 

inspection data provides confirmation of the growth and inspection reliability parameters of 

the simulation and supports the idea that the model may also be run forward in time, as 

necessary for performing operational assessments. 

7. Discussion  

Similar results were obtained for two other steam generators, and having obtained 

agreement of model and data, one can examine the resulting parameters and their physical 

significance.   

 A consistent size is obtained for the susceptible tube population, which ranged from 

165 to197, i.e., within 10% of the median value, in all three cases.  

 The reporting decision level extracted from the data corresponded to 10 ± 2% 

through-wall depth for all three steam generators. 

 The plugging decision level, also consistent, was confined to the range 27 ± 4% 

through-wall depth for all three steam generators. 

 A variation in the apparent flaw growth rate was observed:  the probability of growth 

into the next higher 5-percent depth bin ranged over a factor of two: from 0.04 to 0.09. 

 

 

 
 

Figure 3. Progression of the observable (thin solid lines) and underlying (dashed lines) flaw population 

within the simulation. 
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 A potential use for this type of analysis is to assess the effectiveness of remediation 

strategies.  One of the steam generators examined underwent two further inspections 

subsequent to implementation of structural modifications.  In this case, the number of 

flawed tubes did not increase significantly post-remediation, but this would not be 

meaningful per se, since comparison to the expected flaw number is needed.  Figure 4 

shows the tally of flaws deeper than 15% through-wall as a function of time.  The 

effectiveness of the remediation can be seen from the divergence of the data 

(discrete points) from the growth rate modeled on the basis of the first four inspections.  

Further inspections would be needed to confirm effectiveness. 

 Further applications of the present approach may include assessment of different 

inspection and maintenance regimes.  Longer or shorter intervals between inspection, 

higher or lower detection capabilities, or the acceptability of underlying system condition 

deduced from simulation of observable apparent condition, may provide economic or safety 

benefits to system operators. 

 

 

 
 

Figure 4. Effect of remediation at year 13.  The model prediction and inspection data diverge in subsequent 

years. 
 

8. Future Work  

Limitations of the present approach include the difficulty of tracking the history of 

individual system elements and individual degradation sites on an element.  This is due to 

the inherent history-independence of Markov chains and the very large matrices necessary 

to work around this property.  A Monte Carlo approach to the problem is being undertaken 

to obtain more flexibility in use of model probability distributions, historical tracking of 

each degradation, and the ability to substitute different degradation modules into the 

general simulation framework.  
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