5th European-American Workshop on Reliability of NDE – Lecture 33

Evaluating POD in Real Situations and the 'Delta' Factor

Martin WALL *

* ESR Technology Ltd. National NDT Centre (NNDTC), 22 East Central, Olympic Way, Milton Park, Abingdon, Oxfordshire, OX14 4SA, UK martin.wall@esrtechnology.com

Abstract

The use of Probability of Detection (POD) to characterise the reliability of non-destructive testing is well established in safety critical and other industries including aerospace, nuclear and offshore. There are established methodologies for determining reliability from POD trials and increasingly by modelling. POD provides an important input to integrity and safety assessments.

For a variety of reasons POD in real situations may differ to that established in trials; for example due to human or environmental factors(HF) or application related (AP) factors such as defect tightness or characteristics, coatings, thresholds and sensitivities used, or component geometry or thickness. This difference between the POD in trials or modelling and real situations is referred to as the "delta-factor". What would be the effect on POD if a crack was a facetted stress corrosion crack rather than fatigue, or if the crack was under compression? What would be the effect of combining NDT techniques or repeat inspection?

This paper shows a number of approaches used by NNDTC to evaluate the "delta" of reliability measurements to the field performance of NDT including: use of human reliability data, such as that arising from PISCIII; empirical measurements; the use of NDE simulators; derivation of the delta-factor using POD models; and use of POD trial data in real situations.

POD models developed by NNDTC are used to show how parametric differences can be assessed. An example is given of the use of "spot-the-ball" simulators intrinsic within these models and an NDE simulator developed for railway axle inspection can be used to evaluate operator effects. Methodologies for correcting for human factors using data from PISC III and comparison of automated and manual UT inspection are also described.

Year	% Models & Simulation	% Trials	Label
1998 1st EAW	5%	95%	AEA NNDTC (UK), IOWA CNDE (US)
2002 2nd EAW	7%	93%	AEA NNDTC (UK), BAM (DE), IOWA CNDE (US)
2005 3rd EAW	10%	90%	lowa (US), AEA NNDTC (UK), CEA (FR), BAM (DE)
2009 4th EAW	20%	80%	BAM (DE), ESR NNDTC (UK), HOIS (UK), CEA (FR), TNO (NE), Others
2013 5th EAW	50%	50%	BAM (DE), CEA (FR),ESR NNDTC (UK), HOIS (UK), IZFP(DE), TNO (NE), Others

NIL Trial data Ultrasonics (I	a Automate UT)	ed v	/ Manua		ESR	echnology
NDP: Pilets 6 to 12 mm thick	and the state of t	1 19 8 8 8 7 7 8 8 9 7 7 8 8 9 7 7 8 8 9 8 8 8 9 9 8 8 8 8	NIL Trials: "NDO I" (Pla	ntes 30, 60 and 160mm thick POD	Comma Automa typicall better n NIL Tri manua (typica Used tr applica used tr applica Used tr applica	ercial equipmen ated methods y found to give r eliability (~80% als) compared to I methods I methods D distinguish tition parameters factors (<i>Lilley</i> , 7)
Technique	6+8mn	n	8+10mm	10+12mm	15mm	Average
µ+ TOFD		80	79	75	96	82%
µ+ PE		82	84	82	86	84%
Manual PE		46	46	48	69	52%
X-RT		69	63	66	67	66%
γ-RT		63	53	54	71	60%
Bevel RT		94	94	96	95	95%
						Slide

		pection		A Hyder Consulting	group compan	y myser V
Reflectivity (SCC v fatigue)						
Surface	Detectability	Description	Original POD	Turbine blade	POD Slope	PO Lev
geometry Environment	UT-Reflectivity	Are the defects as detectable as those used to generate the POD curves? e.g. defect orientation, roughness.	Clear cut defects giving specular or corner trap	UT – sensitive to large cracks, but not small	-2	+2
Brossuro	Surface condition	Are the surface conditions as comparable?	Good cond', ground.	ок	0	0
Access	Surface geometry	Does the component geometry have an influence on the detectability? e.g. curvature, shadow effects.	No geometry effects.	Very strong detrimental impact.	0	-3
	Interference	Is masking possible? e.g. delayed geometric echoes, satellite defects	None present.	Unlikely	0	0
Interpretation	Equipment	How does this compare to the suitability of the equipment used during the triple?	Top quality equipment.	Assume OK	0	0
Operator skill level	Reliability	during the trians:				
Hand to eye	Environment	How does the working environment compare?	Laboratory, except TEL Minimal	Hot, noisy site conditions	-1	-1
coordination	Tressure	Are the work pressures difference	Winninai.	to XS	- 1	
Familiarity	Access	Do access condition vary from those which apply to the study environment?	Good access.	Awkward – large impact.	-2	-3
Diligence	Interpretation	Will interpretative skills differ from those used during the POD trials?	Simplistic configurations with clear cut	Very difficult – significant impact	-3	-3
Repetition	Operator Skill	How do operator skills differ from	Top level	Same.	0	0
Third north	Level	those participating in the trial? Will they always be available?	operators used.			
observations	Hand to eye co- ordination	How does this differ from the trial conditions?	Easy access.	Very difficult – major impact.	-8	-3
Supervision	Familiarity	How tamiliar are the operators with the application and the procedures compared to the trials?	Operators generally familiar with procedures	V good	+2	+9
Permanent record of	Diligence	How could this differ from that of the operators participating in the trials?	The operators were under scrutiny.	Operators worked in isolation	-1	-1
data	Repetition	What effect will this have compared to	Not specifically a	Highly	-2	-9

'Spot-the-Defect' Simulators	
Defect parameters	Model produces simulated data (examples ESA POD models, HOIS POD Generators UT, CR radiography))
Number of defects Max number of defects to add (>=0) 50	Can include random numbers, size and types of defects in the image
Defect wall loss Max , mm 1.5	Images presented to the inspector in real time as NDT data
Defect aspect ratio Wright / Height 2 Wright / Height 5 Min	Inspector(s) assess data and mark where they can see a defect
Circumferential range, degrees Centre angle, deg 180 Spread either side of centre 60	Software analyses the results to give POD and false calls (POF)
OK Run Model Cancel	Useful training aid, complementary to trials, helps understand human errors i interpretation of data
	Burch S F and Stow B A BINDT 2005 and Insight
	Burch S F and Stow B A Insight Vol 50 No 9 Sep 2008 p485-489 _{Slide 21}

